RABiTS Buffering using Combustion Chemical Vapor Deposition

Todd Polley, Shara Shoup, Marvis White, Steve Krebs, Natalie Darnell MicroCoating Technologies, Inc.

2003 Wire Development Workshop January 21-22, 2003

CCVD RABITS Buffers

CCVD Technology:

 Atmospheric pressure flame based deposition of epitaxial buffers on reel-to-reel biaxially textured Ni or Ni-W tape.

CCVD Advantages:

- Multi-layering flexibility
- Coating stoichiometry control and flexibility
- Non-vacuum, long length process
- Lower capital and material costs
- Non-hazardous, environmentally friendly

Buffer Deposition System – Architecture Versatility

Replace "X" with BST, CeO₂, Gd₂O₃, LAO, LMO, LZO, Y₂O₃, YSZ or multiples of each for additional buffer architectures enabled by the CCVD technology

MCT

Overview of CCVD Buffer Coatings on Ni

Standard architecture

- 10-50 nm CeO₂ cap/200 nm STO/BST seed

Epitaxy

- Epitaxial BST, STO, and CeO₂ deposited directly on Ni
- 0% in-plane misorientation
- Less than 2% out-of-plane misorientation
- Phi and omega FWHM ≤ Ni
- Uniform over meter+ lengths

Roughness

Average of 18-20 nm (equivalent to Ni)

Diffusion Barrier

Ni does not penetrate buffer (XPS depth profiles)

Electrical Characterization

 J_C of 1.12 MA/cm² demonstrated for PLD YBCO (ORNL) on CCVD RABiTS

Recent CCVD Buffer Improvements

- Microstructure and Epitaxy Improvements
 - Reduction of gas turbulence near deposition region has reduced particle formation
 - Smoother gas flow geometries
 - Lower gas flow rates
 - Smooth, dense STO microstructure
 - Reduced out-of-plane misorientation
 - Potential increase in subsequently deposited YBCO's current carrying capability

Overview of CCVD Buffer Coatings on Ni-W

- Several architectures show excellent epitaxy
 - CeO₂ and Gd₂O₃ directly on Ni-W
 - LZO/CeO₂/Ni-W
 - CeO₂/Gd₂O₃/Ni-W
 - Epitaxy uniformity along meter+ lengths
 - No appreciable difference in epitaxy obtained using OST and ORNL Ni-W
- Electrical Characterization
 - A limited number of samples have been qualified with PLD YBCO
 - Minimal J_c has been demonstrated

CCVD Buffer Goals for FY 2003

- Scale to 25+ meter lengths of high-quality CCVD RABiTS
 - Constructing an eight nozzle system
- Enable critical currents of 100 amps for meter lengths (end-to-end)
- Optimize buffer architectures and properties
 - Both on Ni and Ni-W
 - For a variety of YBCO deposition techniques, including CCVD
- Continue to offer lengths of CCVD RABiTS for sale
 - MCT began selling CCVD RABiTS in mid-2002
 - MCT has sold buffered tape to 2 U.S. and 2 international customers
 - Price sheet available with prices based on R&D quantities
 - MCT is currently scaling to double throughput

Next Generation of CCVD Deposition System

- MCT's Scaled 8-nozzle System
 - Double throughput
 - Incorporate design improvements
 - To be completed by the end of February 2003

- Integrate In-line Diagnostics
 - Continuous XRD monitoring
 - Indicates changes in texture
 - Tested in reel-to-reel mode

STO on Ni out of-plane % misorientation

Next Generation of CCVD Deposition System

New Deposition Geometry

- Increased rate and efficiency
- 10x increase in rate
- Active control of deposition temperature

- Requires further optimization of materials properties
- Requires integration with tape motion

Collaboration

MicroCoating Technologies

- Optimization and scaling of RABiTS buffer deposition
- Optimization of YBCO depositions

Oxford Superconducting Technology

- Optimization of Ni and Ni-W tapes
- Supplied Ni and Ni-W tapes for buffer development

ORNL

- MCT and ORNL have exchanged buffer layers
- ORNL has provided MCT with Ni-W
- ORNL has deposited YBCO on CCVD RABiTS
- MCT has used the Accelerated Coated Conductor Initiative facility for reel-to-reel XRD and laser scatterometry
- MCT has purchased a commercial license for RABiTS

LANL

LANL has deposited PLD YBCO on CCVD RABiTS

BNL

BNL has deposited BaF₂ YBCO on CCVD RABiTS